

Teaching the Control of Variables Strategy: A Research-synthesis

Martin Schwichow, Hendrik Härtig, Tim Höffler, Corinne Zimmerman, Steve Croker

Controlling Variables

"Good experiment"

"Weak experiment"

(Inhelder & Piaget, 1958 p.68)

Students' understanding

CVS and Science Education

- 1) Important inquiry skill (Dewey, 2002; Popper, 1966)
- 2) Curricula and standards (NGSS, 2013; NRC, 2000; KMK, 2005)
- 3) Linked to general educational goals (Kuhn, 2005; Klafki, 1979)

Investigative studies:

Students use the CVS in some circumstances but not in all

(Tschirgi, 1980, Croker & Buchanan, 2011)

 Students have no general understanding of the CVS without instruction (Morris et al, 2012)

➔ CVS-Instruction

CVS Instruction

- Intervention studies:
 - Direct instruction versus discovery learning
 (Chen & Klahr 1999; Klahr & Nigam 2004; Dean & Kuhn 2007)
 - Influence of age on learning the CVS

(Grygier, 2008; Padilla, et al 1984; Case and Fry, 1973)

- First meta-analysis (Ross, 1988)
 - CVS-focused instructions
 - Feedback related to CVS
 - Origin of test instrument
 - •

CVS Instruction

A new meta-analysis is required because:

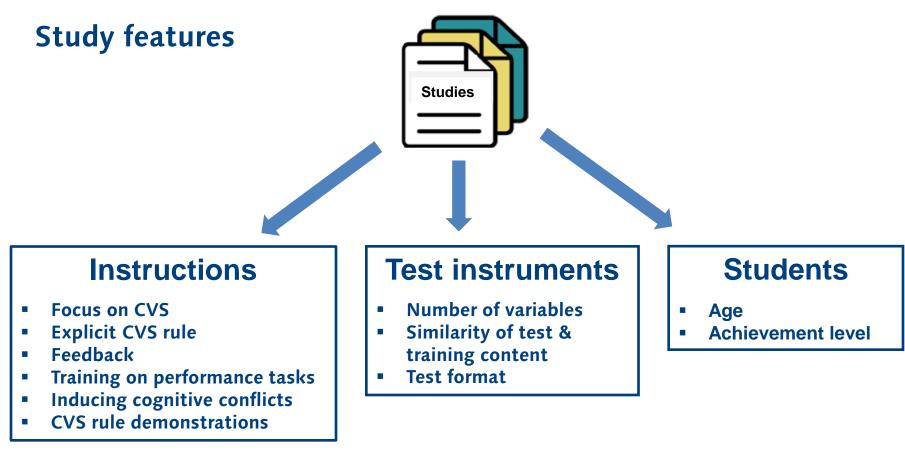
- Numerous new studies (n = 41)
- Changes in the methods & standards of meta-analysis
 (e.g. exclusion of outliers; depended effect sizes)

→ Validity of older findings

- Using different theoretical frameworks
- Using online materials
- Elementary students
- →Potential additional study features

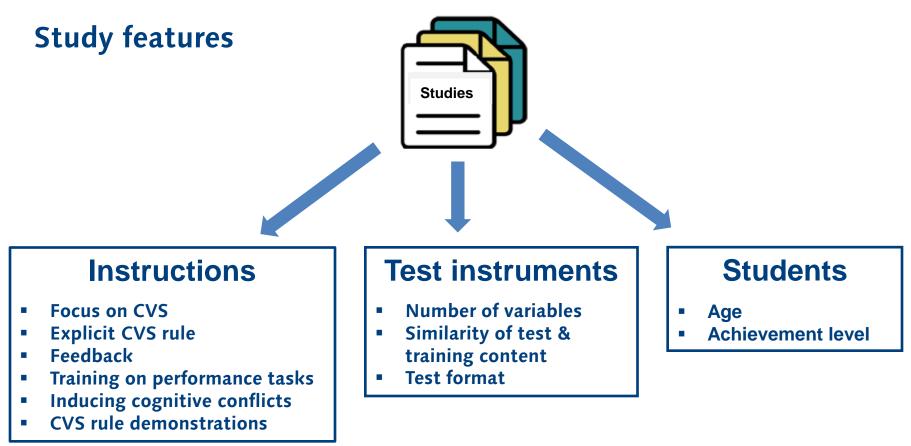
Methods – Study search & inclusion

Literature search (key words: e.g. control of variables strategy, inquiry, cognitive development)

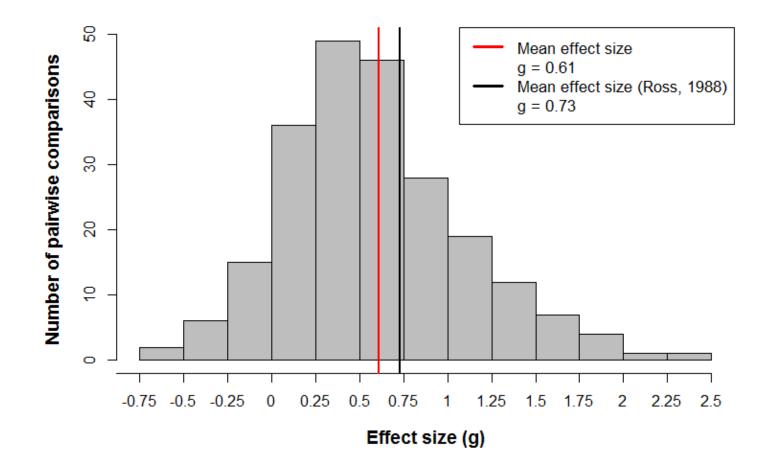

→450 studies

Inclusion criteria:

- 1. Intervention study concerning the CVS
- 2. Contrasting of a treatment and a control group
- 3. Intervention context related to science
- 4. Reporting of data for calculating effect sizes
- 5. ...
- → 76 studies


Methods – Study coding

Methods – Study coding


 \rightarrow 237 pairwise comparisons from 76 studies

→ Robust meta-regression (Hedges, Tipton & Johnson 2010)

Results – Overall effect Size

Distribution of effect sizes after elimination of outliers

9

Results – Instruction features

Study features	g	SE	m	k
Focus on CVS	0.63	0.06	43	166
Additional (non-CVS) content	0.58	0.07	30	60
Teaching explicit CVS rule	0.58	0.06	44	137
No explicit rule	0.65	0.07	32	84
Use of feedback	0.66	0.09	33	91
No use of feedback	0.58	0.05	46	135

Results – Instruction features

Study features	g	SE	m	k	_
Training on real or virtual tasks	0.59	0.05	66	183	
No training	0.74	0.08	14	43	
Use of cognitive conflict	0.8	0.09	22	51 _a	1
No use of cognitive conflict	0.53	0.05	54	175 _b	Correlatio
Use of rule demonstrations	0.69	0.06	44	133 _a	
No use of rule demonstrations	0.48	0.08	24	69 _b	J

Results – Test features

Study features	g	SE	m	k
Four or more variables	0.68	0.09	36	103
Three or fewer variables	0.75	0.16	11	19
Identical content to training	0.61	0.09	23	59
Different content to training	0.57	0.05	51	139
Test-format				
Multiple-choice	0.52	0.05	20	42 _a
Open-response	0.65	0.06	27	46 _a
Performance tests (virtual)	0.42	0.05	11	25 _a
Performance tests (real)	0.74	0.05	32	98 _b

- 1) Teaching CVS is effective but ...
- 2) We know only two features of effective instructions
- 3) Explanation and physical experiences are non-effective
 - → Not learning but transfer of CVS
- 4) CVS is a cognitive strategy
 - → Hands-on hinder CVS learning
- 5) CVS is a complex construct
 - ➔ More research on CVS sub-skills

Features of direct instruction (Hattie, 2008)		Our findings
1) Engagement of students	→	Cognitive conflicts
2) Presentation of information	→	Rule demonstrations
3) Guided practice	→	Training tasks
4) Feedback	→	Feedback
5) Independent practice	→	Training tasks

Features of direct instruction (Hattie, 2008)		Our findings	
1) Engagement of students	→	Cognitive conflicts	√
2) Presentation of information	→	Rule demonstrations	\checkmark
3) Guided practice	→	Training tasks	X
4) Feedback	→	Feedback	X
5) Independent practice	→	Training tasks	X

Features of direct instruction (Hattie, 2008)		Our findings	
1) Engagement of students	→	Cognitive conflicts	\checkmark
2) Presentation of information	→	Rule demonstrations	\checkmark
3) Guided practice	→	Training tasks	X
4) Feedback	→	Feedback	X
5) Independent practice	→	Training tasks	X

- 1) Which features make direct instruction effective?
- 2) What is direct in direct instruction?

Thank You!

schwichow@ipn.uni-kiel.de

References

Case, R., & Fry, C. (1973). Evaluation of an attempt to teach scientific inquiry and criticism in a working class high school. *J. Res. Sci. Teach.*, 10(2), 135–142 Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. *Child Development*, 70(5), 1098-1120

- Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real-world context: The effect of prior belief and outcome on children's hypothesis-testing strategies. British Journal of Developmental Psychology, 29.
- Dean, D., & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Sci. Ed., 91(3), 384-397
- Dewey, J. (2002). Logik : Die Theorie der Forschung [Logic: The theory of inquiry] (1st ed.). Frankfurt am Main: Suhrkamp.
- Grygier, P. (2008). Wissenschaftsverständnis von Grundschülern im Sachunterricht [Epistemological understanding of elementary students participating in science classes]. Bad Heilbrunn: Klinkhardt.
- Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics, 6(2), 107–128
- Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. *Res. Synth. Method*, 1(1), 39–65
- Huffcutt, A. I., & Arthur, W. (1995). Development of a new outlier statistic for meta-analytic data. Journal of Applied Psychology, 80(2), 327–334
- Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. London: Routledge and Kegan Paul.
- Klafki, W. (1996). Neue Studien zur Bildungstheorie und Didaktik: Zeitgemässe Allgemeinbildung und kritisch-konstruktive Didaktik (5., unveränd. Aufl). Reihe Pädagogik. Weinheim [u.a.]: Beltz.
- Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. *Psychological Science*, *15*(10), 661–667
- KMK. (2005). *Bildungsstandards im Fach Physik für den Mittleren Schulabschluss: Beschluss vom 16.12. 2004*. München: Wolters Kluwer Deutschland GmbH. Kuhn, D. (2005). *Education for thinking*. Cambridge, MA: Harvard University Press.
- Morris, B. J., Croker, S., Masnick, A., & Zimmerm, C. (2012). The emergence of scientific reasoning. In H. Kloos (Ed.), *Current topics in children's learning and cognition* (pp. 61–82). InTech.
- National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, D.C: National Academy Press.
- National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C: The National Academies.
- Padilla, M. J., Okey, J. R., & Garrard, K. (1984). The effects of instruction on integrated science process skill achievement. J. Res. Sci. Teach., 21(3), 277–287
- Popper, K. R. (1966). Logik der Forschung [The logic of scientific discovery]. Tübingen: J.C.B. Mohr.
- Ross, J. A. (1988). Controlling variables: A meta-analysis of training studies. Review of Educational Research, 58(4), 405-437
- Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, , 51(11), 1–10.
- Viechtbauer, W., & Chung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Res. Synth. Method, 1(2), 112–125

Impact of outlier

Tab. 4

Comparison of different meta-analytical methods

	Ross (1988) with outliers	New analysis with outliers	Ross (1988) without outliers	New analysis without outliers
Studies	62	76	44	72
Percentage of Studies included in Ross' analysis	100%	38%	100%	35%
Effect size (g)	0.73	0.77	0.61	0.61

Note. Datasets are not identical due to differing inclusion criteria

Impact of outlier

Methodological approach

Differences to Ross (1988) analysis:

- a) Inclusion criteria
- b) Estimation of effect sizes
- c) Calculation of mean and moderator effect sizes
- d) Exclusion of outliers
- ➔ Need for outlier analysis in meta-analysis