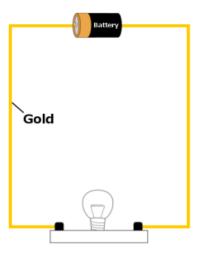
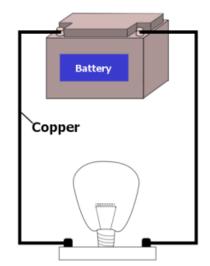
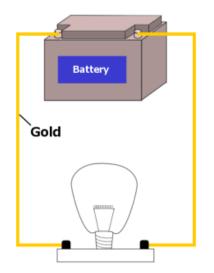

What students learn from hands-on experimental tasks


Martin Schwichow Hendrik Härtig


Control-of-Variables-Strategy



Control-of-Variables-Strategy

Teaching CVS – Results of a Meta-Analyses:

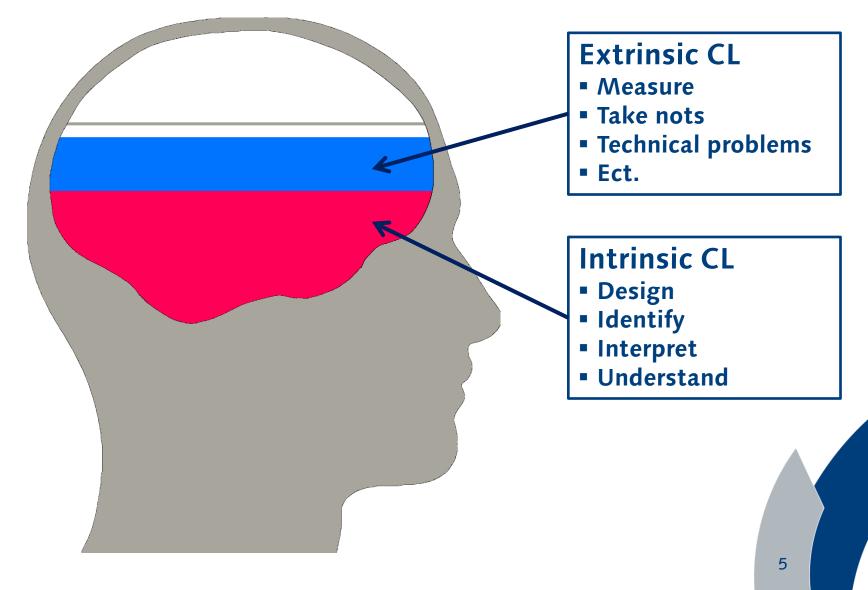
Instruction Methods	g
Cognitive conflict	0.80 _a
No cognitive conflict	0.53 _b
Hands-on training	0.59
No hands-on training	0.74
Test Instruments	
Multiple-choice	0.52 _a
Open response	0.65
Hands-on tests	0.74 _b
Virtual tests	0.42 _a

(Schwichow et al, 2015)

Hands-on activities in science classes () IPN

→ Hands-on activities are often utilized in science classes ...

(Börlin, 2012; Tesch, 2005)


→because they are assumed to support:

- Content knowledge acquisition
- Learning of scientific practices
- Understanding of the nature-of-science
- Motivation and interest in science (Haury, et al, 1994; Millar, 2004)

→ They might have a negative impact on learning CVS? (Schwichow et al, 2015)

Hands-on activities in science classes () IPN

Cognitive load theory (Sweller, 1988; 1994)

Design

Sample: 161 8th graders

Training	Pre-	Introduction	In-	Training	Posttest
condition			between-		
	 MC-CVS 		 MC-CVS 		 MC-CVS
Hands-on	 Content 			Hands-on	Hands-on CVS:
(n = 82)	knowledge				1) Elec.magnets
	 Cognitive 	Cognitive			2) Light bulb
Paper-and	abilities	conflict			Poster CVS:
pencil	 Reading 			Paper-and-	1) Magnets
(n= 79)	abilities			pencil	2) Memory
					 Content knowledge
	First unit (90 min)			Second unit ((135 min)

Materials

Hands-on

Physik	1100	Kraft eines Elektromagneten	Code:	1
Physik Elektrizitätslehre	E C			

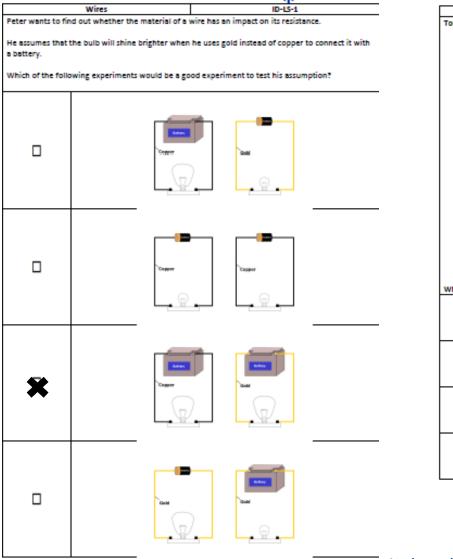
<u>Aufgabe 1:</u>

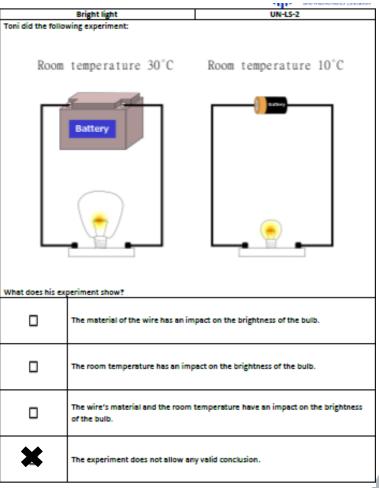
Lea und Marian wollen herausfinden, ob die anziehende Kraft eines Elektromagneten davon abhängt, wie oft der Draht um den Kern gewickelt ist. Sie haben dazu das vor euch aufgebaute Experiment geplant.

Schaut euch das Experiment bitte in ruhe an und verändert es zuerst einmal nicht. Leider ist ihr Experiment nicht aussagekräftig. Schreibt bitte auf was die Probleme dieses Experiments sind.

Paper-and-pencil

Elektrizitatslehre	Physik Elektrizitätslehre	Kraft eines Elektromagneten	Code:	
--------------------	------------------------------	-----------------------------	-------	--


Aufgabe 1:


Lea und Marian wollen herausfinden, ob die anziehende Kraft eines Elektromagneten davon abhängt, wie oft der Draht um den Kern gewickelt ist. Sie haben dazu folgendes Experiment geplant:

Schaut euch das Experiment bitte genau an. Leider ist ihr Experiment nicht aussagekräftig. Schreibt bitte auf was die Probleme dieses Experiments sind.

Test Instruments CVS MC test

Test Instruments

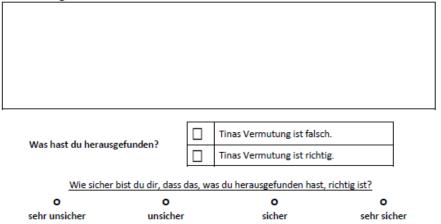
CVS Hands-on test

Elektromagnet 1

	Uhrzeit			
Beginn			:	
Ende			:	

Verschiedene Ströme

Tina möchte die Stärke eines Elektromagneten variieren.


Vermutung:

Tina vermutet, dass das magnetische Feld eines Elektromagneten stärker ist, je größer der Strom ist, der durch ihn fließt.

Überprüfe bitte durch Experimentieren, ob Tinas Vermutung richtig ist. Du kannst dazu alle Gegenstände nutzen, die du in der Kiste "Elektromagnet" findest. Du musst aber nicht alle Materialien nutzen!

Bedenke, dass in einem guten Experiment immer zwei Aufbauten miteinander verglichen werden müssen.

Beobachtung:

Denk noch einmal über deine Experimente nach. Warum kannst du ganz sicher sein, dass du etwas über den Einfluss der Farbe auf die Erwärmung herausgefunden hast?

Test Instruments

CVS Poster test

Poster B

Does the amount of iron have an impact on the force of a magnet?

Hypotheses

I think the more iron is in a bucket the stronger the bucket will be attracted by the magnet. I think that because I know that iron is attracted by magnets.

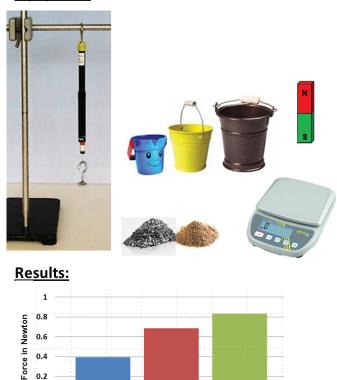
<u>Material</u>

3 Different buckets Iron & wood shavings

1 Scale

- 1 Force meter
- 1 Magnet

Procedure:

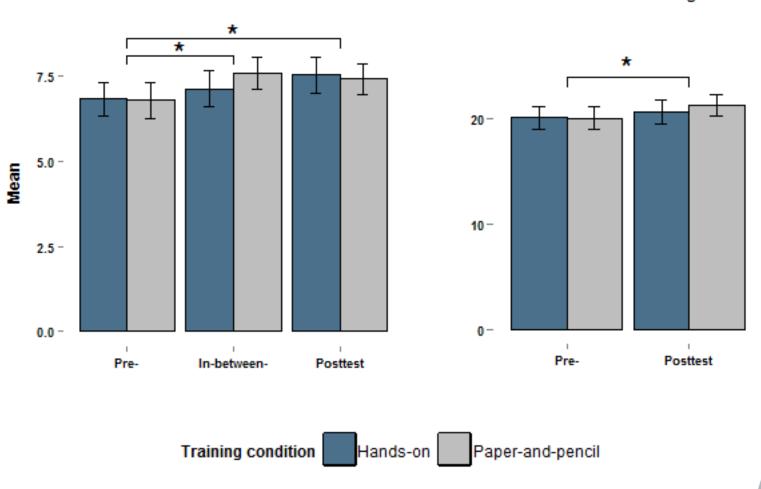

- 1. I filled 20g, 50g and 65g iron shavings in the three buckets..
- 2. Than I added 20g wood shavings to each bucket .
- 3. I put a magnet directly under the force meter.
- 4. I hang the three different bucket at the force meter.
- 5. I draw a figure of my results.

Conclusion

The bucket with the fewest iron attracted the strongest.

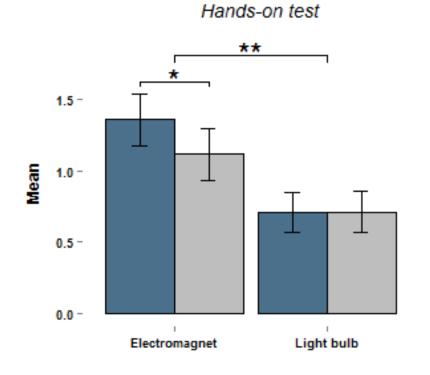
<u>Equipment</u>

20g Iron

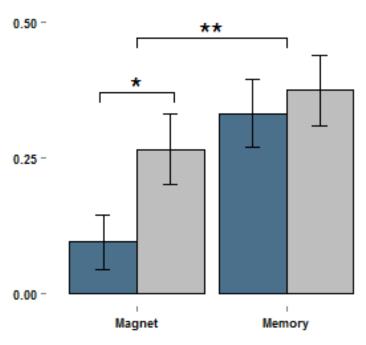

50g Iron

65g Iron

10


Results

CVS MC test



Content knowledge

Results

Poster evaluation test

Training condition Hands-on Paper-and-pencil

What students learn from hands-on activities?

Nothing unique?!

->Comparing hands-on to virtual training tasks

(Klahr, Triona & Williams, 2007; Triona & Klahr, 2003)

Discussion

1)Theoretical implication

- → Hands-on task are neither beneficial nor obstructive
- →CVS is an non-manual skill
- →Cognitive manipulation of variables is important

2) Implication for science education:

 \rightarrow Hands-on as well as paper-and-pencil support learning of CVS

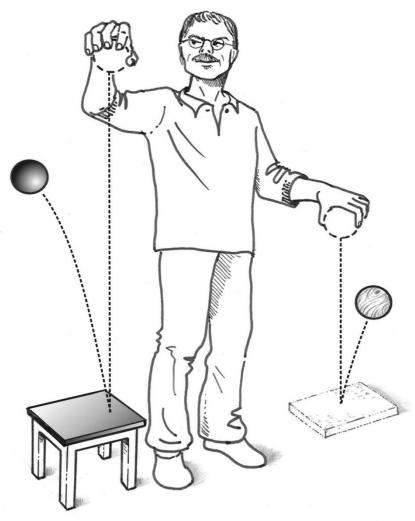
Thank You!

schwichow@ipn.uni-kiel.de

Materials

	Tasl	k 1	T	ask 2	Т	ask 3
Training	Coils		Core Material		Current	
Condition						
	Note that	Plan/	Plan	Interpret	Plan/	Interpret
	the	sketch a	/sketch	the expt.	sketch	the expt.
	presented	better	plus run		plus	
Hands-on	expt. is	expt.	expt.		run	
	confounded				expt.	
	Note that	Plan/	Plan/	Interpret a	Plan/	Interpre
	the	sketch a	sketch	photo of	sketch	a photo
Paper-and-	presented	better	expt.	an expt.	expt.	of an
pencil	expt. is	expt.	only		only	expt.
	confounded					

Materials


Comparison of hands-on and paper-and-pencil materials

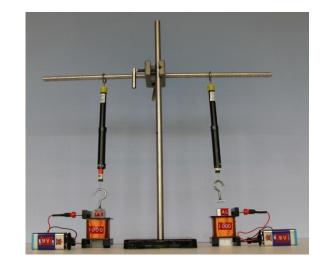
	Hands-on	Paper-and-pencil	
Content	identical		
Tasks	identical		
Number of Tasks	identical		
Source of Information	Experiment	Photo	
Number of solved tasks	different		
Required content knowledge	Circuits + CVS	CVS	
Manual skills	Setup of the circuits & manipulation of Variables	No	
Quality of the information	Depend on experiments	Default by Photos	

17

Cognitive Conflict

Lawson & Wollmann (1976)

Experiments


Paper-and-pencil

Lillie's hypotheses: The force of an electromagnet depends on the current.

Please run an experiment to prove Lillie's hypotheses. Take notes of all your results and your experimental set-up.

Our results:

Lilly and David did the following experiment:

What did you found-out about Lillie's hypotheses?

What did Lilly an David found out?

Lillie's hypotheses is correct. The force of an electromagnet depends on the current..

Lillie's hypotheses is wrong. The force of an electromagnet does not depend on the current..

Test Instruments

CVS Poster test

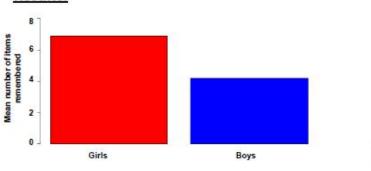
Poster A

Who has the better memory? Girls or boys?

Hypotheses

I think girls have a better memory than boys because girls pay more attention to details than boys.

Sampel


- 19 girls (8th graders)
- 17 boys (6th graders)

Procedure:

- I showed the boys and girls 8 items to remember an read out their names loud.
- 2. The participants should writhe down the name of each item on a piece of paper. They had 20 sec. for each item.
- 3. Than I toke the notes and poster away.
- 4. Next the participants wrote down the names of each item they remember.
- 5. I counted the correct names and draw a graph.

Items

20

Conclusion

Girls have a better memory than boys.

References

- Cobern, W. W. (1993). Contextual Constructivism: The impact of culture on the learning and teaching. In K. G. Tobin (Ed.), *The Practice of constructivism in science education* (pp. 51–69). Washington, D.C: AAAS Press.
- Désautels, J. (1998). Constructivism-in-action: students examine their idea of science. In M. Larochelle, N. Bednarz, & J. W. Garrison (Eds.), *Constructivism and education* (pp. 121–138). Cambridge, New York: Cambridge University Press.
- Haury, D. L., & Rillero, P. (1994). *Perspectives of hands-on science teaching*. Columbus, Ohio: ERIC Clearinghouse for Science, Mathematics and Environmental Education,.
- Klahr, D., Triona, L. & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching. P. 183-203.
- Millar, R. (2004). The role of practical work in the teaching and learning of science. In *High school science laboratories: Role and vision*.
- Schwichow, M. Christoph, S., Boon, W., & Härtig, H. (2015). The impact of sub-skills and item content on student's skills with regard to the control-of-variables-strategy (CVS). Submitted for publication.
- Schwichow, M., Croker, S., Zimmerman, C., Höffler, T. N., & Härtig, H. (2014). *Teaching the Control-of-Variables Strategy: A Meta Analysis*: submitted.
- Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. *Cognitive Science*, 12(2), 257–285
- Triona, C., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students' ability to design experiments. Cognition and Instruction p. 149-173.
- Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. *Learning and Instruction*, 4(4), 295–312
- Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. *School Science and Mathematics*, *90*(5), 403–418